Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.070
1.
Sci Rep ; 14(1): 10610, 2024 05 09.
Article En | MEDLINE | ID: mdl-38719857

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Arthritis, Rheumatoid , Chemokines , Cytokines , Fibroblasts , Histone-Lysine N-Methyltransferase , Histones , Myeloid-Lymphoid Leukemia Protein , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Fibroblasts/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Cytokines/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Histones/metabolism , Chemokines/metabolism , Chemokines/genetics , Gene Expression Regulation , Tumor Necrosis Factor-alpha/metabolism , Promoter Regions, Genetic , Female , Male , Cells, Cultured , Middle Aged , RNA, Messenger/metabolism , RNA, Messenger/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Aged
2.
BMC Oral Health ; 24(1): 569, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745274

BACKGROUND: Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS: To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS: Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS: Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.


Extracellular Matrix Proteins , Osteoarthritis , Phosphoproteins , Sialoglycoproteins , Temporomandibular Joint Disorders , X-Ray Microtomography , Animals , Osteoarthritis/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/genetics , Mice , Extracellular Matrix Proteins/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/etiology , Temporomandibular Joint Disorders/genetics , Phosphoproteins/genetics , Mandibular Condyle/pathology , Mandibular Condyle/diagnostic imaging , Temporomandibular Joint/pathology , Temporomandibular Joint/diagnostic imaging
3.
Sci Rep ; 14(1): 10099, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698019

The causal association between vitamin E status and osteoarthritis (OA) remains controversial in previous epidemiological studies. We employed a Mendelian randomization (MR) analysis to explore the causal relationship between circulating alpha-tocopherol levels (main forms of vitamin E in our body) and OA. The instrumental variables (IVs) of circulating alpha-tocopherol levels were obtained from a Genome-wide association study (GWAS) dataset of 7781 individuals of European descent. The outcome of OA was derived from the UK biobank. Two-sample MR analysis was used to estimate the causal relationship between circulating alpha-tocopherol levels and OA. The inverse-variance weighted (IVW) method was the primary analysis in this analysis. We used the MR-Egger method to determine horizontal pleiotropic in this work. The heterogeneity effect of instrumental IVs was detected by MR-Egger and IVW analyses. Sensitivity analysis was performed by removing single nucleotide polymorphism (SNP) one by one. Three SNPs (rs964184, rs2108622, and rs11057830) (P < 5E-8) strongly associated with circulating alpha-tocopherol levels were used in this analysis. The IVW-random effect indicated no causal relationship between circulating alpha-tocopherol levels and clinically diagnosed OA (OR = 0.880, 95% CI 0.626, 1.236, P = 0.461). Similarly, IVW analysis showed no causal association between circulating alpha-tocopherol levels and self-reported OA (OR = 0.980, 95% CI 0.954, 1.006, P = 0.139). Other methods of MR analyses and sensitivity analyses revealed consistent findings. MR-Egger and IVW methods indicated no significant heterogeneity between IVs. The MR-Egger intercept showed no horizontal pleiotropic. The results of this linear Mendelian randomization study indicate no causal association between genetically predicted alpha-tocopherol levels and the progression of OA. Alpha-tocopherol may not provide beneficial and more favorable outcomes for the progression of OA. Further MR analysis based on updated GWASs with more IVs is required to verify the results of our study.


Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoarthritis , Polymorphism, Single Nucleotide , alpha-Tocopherol , Humans , alpha-Tocopherol/blood , Osteoarthritis/genetics , Osteoarthritis/blood , Male , Female , Genetic Predisposition to Disease
4.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698311

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


CRISPR-Cas Systems , Gene Editing , Inflammation , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/therapy , CRISPR-Cas Systems/genetics , Inflammation/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology , Cellular Senescence/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
5.
FASEB J ; 38(9): e23640, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690715

Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1ß to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1ß-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.


Chondrocytes , Jumonji Domain-Containing Histone Demethylases , Osteoarthritis , Receptor, Notch1 , S-Phase Kinase-Associated Proteins , Ubiquitination , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Animals , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Rats , Chondrocytes/metabolism , Chondrocytes/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Male , Signal Transduction , Rats, Sprague-Dawley , Humans , Apoptosis , Repressor Proteins/metabolism , Repressor Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics
6.
Arthritis Res Ther ; 26(1): 100, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741149

BACKGROUND: Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS: Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS: A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION: Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.


Computational Biology , Ferroptosis , Osteoarthritis , Osteoarthritis/genetics , Osteoarthritis/metabolism , Ferroptosis/genetics , Computational Biology/methods , Humans , Animals , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Biomarkers/metabolism , Biomarkers/analysis , Gene Regulatory Networks/genetics , Machine Learning
7.
Clin Epigenetics ; 16(1): 64, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730337

BACKGROUND: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS: We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.


Cartilage, Articular , Chondrocytes , CpG Islands , DNA Methylation , Epigenesis, Genetic , Organoids , Osteoarthritis , DNA Methylation/genetics , Humans , Osteoarthritis/genetics , CpG Islands/genetics , Chondrocytes/metabolism , Organoids/metabolism , Epigenesis, Genetic/genetics , Cartilage, Articular/metabolism
8.
Aging (Albany NY) ; 16(8): 7043-7059, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38637111

Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis remains uncertain. The intricate association between OA and metabolic processes has yet to receive comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration of immune infiltration in these patients revealed an intricate relationship between immune cells and the identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA.


Biomarkers , Lipid Metabolism , Machine Learning , Osteoarthritis , Humans , Lipid Metabolism/genetics , Osteoarthritis/genetics , Osteoarthritis/immunology , Osteoarthritis/metabolism , Biomarkers/metabolism , Algorithms , Chondrocytes/metabolism , Chondrocytes/immunology
9.
J Orthop Surg Res ; 19(1): 239, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615043

BACKGROUND: This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS: Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1ß-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS: Our results showed lower miR-98-5p levels in both OA cartilage and IL-1ß-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1ß-induced ECM degradation, evident from the decline in MMP-13 and ß-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1ß-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS: In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1ß-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.


Caspase 3 , MicroRNAs , Osteoarthritis , Humans , Caspase 3/genetics , Caspase 3/metabolism , Chondrocytes , Cytokines , Inflammation , Interleukin-1beta/pharmacology , MicroRNAs/genetics , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , RNA, Messenger
10.
Mol Med ; 30(1): 55, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664616

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Apoptosis , Chondrocytes , Extracellular Matrix , Hyaluronoglucosaminidase , NF-kappa B , Osteoarthritis , Signal Transduction , Animals , Humans , Male , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Proteomics/methods
11.
BMC Musculoskelet Disord ; 25(1): 282, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609896

OBJECTIVE: Ferritin heavy chain 1 (FTH1) is an important subunit of ferro-storing proteins and is indispensable for iron metabolism. Though it has been extensively studied in numerous organs and diseases, the relationship between FTH1 and osteoarthritis (OA) is unclear. DESIGN: Primary murine chondrocytes and cartilage explants were treated with FTH1 siRNA for 72 h. Mice were injected with adenovirus expressing FTH1 after destabilized medial meniscus (DMM) surgery. These approaches were used to determine the effect of FTH1 expression on the pathophysiology of OA. RESULTS: FTH1 expression was down regulated in OA patients and mice after DMM surgery. Knock down of FTH1 induced articular cartilage damage and extracellular matrix degradation in cartilage explants. Further, over expression of FTH1 reduced the susceptibility of chondrocytes to ferroptosis and reversed decrements in SOX9 and aggrecan after DMM surgery. Moreover, FTH1 relieved OA by inhibition of the chondrocyte MAPK pathway. CONCLUSION: This study found FTH1 to play an essential role in extracellular matrix degradation, ferroptosis, and chondrocytes senescence during OA progression. Further, injection of adenovirus expressing FTH1 may be a potential strategy for OA prevention and therapy.


Osteoarthritis , Animals , Humans , Mice , Adenoviridae/genetics , Aggrecans , Chondrocytes , Extracellular Matrix , Ferritins , Osteoarthritis/genetics , Oxidoreductases
12.
Lipids Health Dis ; 23(1): 111, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637751

BACKGROUND: Osteoarthritis and lipid metabolism are strongly associated, although the precise targets and regulatory mechanisms are unknown. METHODS: Osteoarthritis gene expression profiles were acquired from the GEO database, while lipid metabolism-related genes (LMRGs) were sourced from the MigSB database. An intersection was conducted between these datasets to extract gene expression for subsequent differential analysis. Following this, functional analyses were performed on the differentially expressed genes (DEGs). Subsequently, machine learning was applied to identify hub genes associated with lipid metabolism in osteoarthritis. Immune-infiltration analysis was performed using CIBERSORT, and external datasets were employed to validate the expression of these hub genes. RESULTS: Nine DEGs associated with lipid metabolism in osteoarthritis were identified. UGCG and ESYT1, which are hub genes involved in lipid metabolism in osteoarthritis, were identified through the utilization of three machine learning algorithms. Analysis of the validation dataset revealed downregulation of UGCG in the experimental group compared to the normal group and upregulation of ESYT1 in the experimental group compared to the normal group. CONCLUSIONS: UGCG and ESYT1 were considered as hub LMRGs in the development of osteoarthritis, which were regarded as candidate diagnostic markers. The effects are worth expected in the early diagnosis and treatment of osteoarthritis.


Lipid Metabolism , Osteoarthritis , Humans , Lipid Metabolism/genetics , Biomarkers , Algorithms , Machine Learning , Osteoarthritis/genetics
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645862

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Aging , Biomarkers , Computational Biology , Machine Learning , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Biomarkers/metabolism , Biomarkers/blood , Computational Biology/methods , Aging/genetics , Inflammation/genetics , Inflammation/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Cellular Senescence/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Gene Expression Profiling , Aged , Male
14.
Arthritis Res Ther ; 26(1): 91, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664820

OBJECTIVE: To characterize aspects of triiodothyronine (T3) induced chondrocyte terminal maturation within the molecular osteoarthritis pathophysiology using the previously established T3 human ex vivo osteochondral explant model. DESIGNS: RNA-sequencing was performed on explant cartilage obtained from OA patients (n = 8), that was cultured ex vivo with or without T3 (10 ng/ml), and main findings were validated using RT-qPCR in an independent sample set (n = 22). Enrichment analysis was used for functional clustering and comparisons with available OA patient RNA-sequencing and GWAS datasets were used to establish relevance for OA pathophysiology by linking to OA patient genomic profiles. RESULTS: Besides the upregulation of known hypertrophic genes EPAS1 and ANKH, T3 treatment resulted in differential expression of 247 genes with main pathways linked to extracellular matrix and ossification. CCDC80, CDON, ANKH and ATOH8 were among the genes found to consistently mark early, ongoing and terminal maturational OA processes in patients. Furthermore, among the 37 OA risk genes that were significantly affected in cartilage by T3 were COL12A1, TNC, SPARC and PAPPA. CONCLUSIONS: RNA-sequencing results show that metabolic activation and recuperation of growth plate morphology are induced by T3 in OA chondrocytes, indicating terminal maturation is accelerated. The molecular mechanisms involved in hypertrophy were linked to all stages of OA pathophysiology and will be used to validate disease models for drug testing.


Cartilage, Articular , Chondrocytes , Osteoarthritis , Osteogenesis , Triiodothyronine , Humans , Triiodothyronine/pharmacology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Osteogenesis/genetics , Female , Biomimetics/methods , Male , Aged , Middle Aged
15.
Int J Biol Sci ; 20(6): 1965-1977, 2024.
Article En | MEDLINE | ID: mdl-38617544

Osteoarthritis (OA) is the most prevalent degenerative joint disorder, causing physical impairments among the elderly. Core binding factor subunit ß (Cbfß) has a critical role in bone homeostasis and cartilage development. However, the function and mechanism of Cbfß in articular cartilage and OA remains unclear. We found that Cbfßf/fAggrecan-CreERT mice with Cbfß-deficiency in articular cartilage developed a spontaneous osteoarthritis-like phenotype with articular cartilage degradation. Immunofluorescence staining showed that Cbfßf/fAggrecan-CreERT mice exhibited a significant increase in the expression of articular cartilage degradation markers and inflammatory markers in the knee joints. RNA-sequencing analysis demonstrated that Cbfß orchestrated Hippo/Yap, TGFß/Smad, and Wnt/ß-catenin signaling pathways in articular cartilage, and Cbfß deficiency resulted in the abnormal expression of downstream genes involved in maintaining articular cartilage homeostasis. Immunofluorescence staining results showed Cbfß deficiency significantly increased active ß-catenin and TCF4 expression while reducing Yap, TGFß1, and p-Smad 2/3 expression. Western blot and qPCR validated gene expression changes in hip articular cartilage of Cbfß-deficient mice. Our results demonstrate that deficiency of Cbfß in articular cartilage leads to an OA-like phenotype via affecting Hippo/Yap, TGFß, and Wnt/ß-catenin signaling pathways, disrupting articular cartilage homeostasis and leading to the pathological process of OA in mice. Our results indicate that targeting Cbfß may be a potential therapeutic target for the design of novel and effective treatments for OA.


Cartilage, Articular , Osteoarthritis , Animals , Mice , Aggrecans , beta Catenin/genetics , Osteoarthritis/genetics , Phenotype , Transforming Growth Factor beta , Wnt Signaling Pathway/genetics
16.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Article En | MEDLINE | ID: mdl-38617547

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


NF-kappa B , Osteoarthritis , Animals , Mice , Chemokines, CXC , Inflammation , Membrane Glycoproteins/genetics , Osteoarthritis/genetics , Phosphatidylinositol 3-Kinases , Receptors, Immunologic/genetics , Signal Transduction/genetics
17.
J Orthop Surg Res ; 19(1): 241, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622668

BACKGROUND: Circular RNAs (circRNAs) play an important role in osteoarthritis (OA). However, the role of circRNA in OA is still unclear. Here, we explored the role and mechanism of circ_0044235 in OA. METHODS: CHON-001 cells were treated with IL-1ß to establish OA model in vitro. The levels of circ_0044235, miR-375 and phosphoinositide 3-kinase (PI3K) regulatory subunit 3 (PIK3R3) were detected by quantitative real-time PCR. Cell count kit-8 assay and flow cytometry assay were used to detect cell viability and apoptosis. The concentrations of inflammation factors were determined by enzyme-linked immunosorbent assay. Western blot was used to detect protein levels. The interaction between miR-375 and circ_0044235 or PIK3R3 was analyzed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Circ_0044235 was significantly decreased in OA cartilage tissue and IL-1ß-treated CHON-001 cells. Overexpression of circ_0044235 promoted IL-1ß-stimulated CHON-001 cell viability and inhibited apoptosis, inflammation, and extracellular matrix (ECM) degradation. In mechanism analysis, circ_0044235 could act as a sponge for miR-375 and positively regulate PIK3R3 expression. In addition, miR-375 ameliorated the effect of circ_0044235 overexpression on IL-1ß-mediated CHON-001 cells injury. In addition, miR-375 inhibition mitigated IL-1ß-induced CHON-001 cell injury, while PIK3R3 silencing restored the effect. CONCLUSION: Circ_0044235 knockdown alleviated IL-1ß-induced chondrocytes injury by regulating miR-375/PIK3R3 axis, confirming that circ_0044235 might be a potential target for OA treatment.


MicroRNAs , Osteoarthritis , Humans , Phosphatidylinositol 3-Kinases/genetics , Osteoarthritis/genetics , Inflammation , Apoptosis/genetics , Chondrocytes , Interleukin-1beta/genetics , MicroRNAs/genetics
18.
PLoS One ; 19(4): e0298575, 2024.
Article En | MEDLINE | ID: mdl-38593124

Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1ß (IL-1ß)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1ß-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.


Cartilage, Articular , Osteoarthritis , Animals , Humans , Rats , Apoptosis , Cartilage, Articular/metabolism , Chondrocytes/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645858

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Bone Development , Cell Differentiation , Chondrocytes , Core Binding Factor Alpha 2 Subunit , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Animals , Bone Development/physiology , Bone Development/genetics , Chondrocytes/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Bone Diseases/genetics , Bone Diseases/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology
20.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621908

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


HMGB1 Protein , Ligusticum , Osteoarthritis , Humans , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Chondrocytes , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Dinoprostone , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Inflammation/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Apoptosis , RNA, Messenger/metabolism
...